If it's not what You are looking for type in the equation solver your own equation and let us solve it.
22^2+7^2=d^2
We move all terms to the left:
22^2+7^2-(d^2)=0
We add all the numbers together, and all the variables
-1d^2+533=0
a = -1; b = 0; c = +533;
Δ = b2-4ac
Δ = 02-4·(-1)·533
Δ = 2132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2132}=\sqrt{4*533}=\sqrt{4}*\sqrt{533}=2\sqrt{533}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{533}}{2*-1}=\frac{0-2\sqrt{533}}{-2} =-\frac{2\sqrt{533}}{-2} =-\frac{\sqrt{533}}{-1} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{533}}{2*-1}=\frac{0+2\sqrt{533}}{-2} =\frac{2\sqrt{533}}{-2} =\frac{\sqrt{533}}{-1} $
| 2x+5+12x+17x-14=360 | | 8x+6=2x+1 | | 8d-1d-4d-8d=5d | | 6r-7=7r-8 | | 4c+3+6=17 | | 11b-6=7 | | 12–7(x+3)–14= | | |4n+3|=21 | | 104=(7x+3)+(9x+42) | | 16x-6=15x+2-x | | (6x-18)+2x=(8x+4)-22 | | 62=x+51 | | 12x+3-4x+7=0 | | 7n-15=-4 | | 62=y+51 | | 48=3*4^5*x | | 1.5x=-2x+8 | | Y=2x-12/6 | | (410−x)/7+70=120 | | 7.4x-5=735 | | 15y-12y=-15 | | 3*4^5x=48 | | 8u-6u-u=9 | | x=x-x | | 4b+4b-6b-2b+2b=8 | | 32–4a=-4 | | 15p-12p+13p=20 | | 2/3=p+1/6 | | x=118-x | | 4z+3z-7z+z=14 | | x=118+x | | 3q+5=-15 |